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1.  Introduction

   The Edwards-curve Digital Signature Algorithm (EdDSA) is a variant of
   Schnorr’s signature system with (possibly twisted) Edwards curves.
   EdDSA needs to be instantiated with certain parameters, and this
   document describes some recommended variants.

   To facilitate adoption of EdDSA in the Internet community, this
   document describes the signature scheme in an implementation-oriented
   way and provides sample code and test vectors.

   The advantages with EdDSA are as follows:

   1.  EdDSA provides high performance on a variety of platforms;

   2.  The use of a unique random number for each signature is not
       required;

   3.  It is more resilient to side-channel attacks;

   4.  EdDSA uses small public keys (32 or 57 bytes) and signatures (64
       or 114 bytes) for Ed25519 and Ed448, respectively;

   5.  The formulas are "complete", i.e., they are valid for all points
       on the curve, with no exceptions.  This obviates the need for
       EdDSA to perform expensive point validation on untrusted public
       values; and

   6.  EdDSA provides collision resilience, meaning that hash-function
       collisions do not break this system (only holds for PureEdDSA).

   The original EdDSA paper [EDDSA] and the generalized version
   described in "EdDSA for more curves" [EDDSA2] provide further
   background.  RFC 7748 [RFC7748] discusses specific curves, including
   Curve25519 [CURVE25519] and Ed448-Goldilocks [ED448].

   Ed25519 is intended to operate at around the 128-bit security level
   and Ed448 at around the 224-bit security level.  A sufficiently large
   quantum computer would be able to break both.  Reasonable projections
   of the abilities of classical computers conclude that Ed25519 is
   perfectly safe.  Ed448 is provided for those applications with
   relaxed performance requirements and where there is a desire to hedge
   against analytical attacks on elliptic curves.
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2.  Notation and Conventions

   The following notation is used throughout the document:

   p              Denotes the prime number defining the underlying field

   GF(p)          Finite field with p elements

   x^y            x multiplied by itself y times

   B              Generator of the group or subgroup of interest

   [n]X           X added to itself n times

   h[i]           The i’th octet of octet string

   h_i            The i’th bit of h

   a || b         (bit-)string a concatenated with (bit-)string b

   a <= b         a is less than or equal to b

   a >= b         a is greater than or equal to b

   i+j            Sum of i and j

   i*j            Multiplication of i and j

   i-j            Subtraction of j from i

   i/j            Division of i by j

   i x j          Cartesian product of i and j

   (u,v)          Elliptic curve point with x-coordinate u and
                  y-coordinate v

   SHAKE256(x, y) The y first octets of SHAKE256 [FIPS202] output for
                  input x

   OCTET(x)       The octet with value x

   OLEN(x)        The number of octets in string x
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   dom2(x, y)     The blank octet string when signing or verifying
                  Ed25519.  Otherwise, the octet string: "SigEd25519 no
                  Ed25519 collisions" || octet(x) || octet(OLEN(y)) ||
                  y, where x is in range 0-255 and y is an octet string
                  of at most 255 octets.  "SigEd25519 no Ed25519
                  collisions" is in ASCII (32 octets).

   dom4(x, y)     The octet string "SigEd448" || octet(x) ||
                  octet(OLEN(y)) || y, where x is in range 0-255 and y
                  is an octet string of at most 255 octets.  "SigEd448"
                  is in ASCII (8 octets).

   Parentheses (i.e., ’(’ and ’)’) are used to group expressions, in
   order to avoid having the description depend on a binding order
   between operators.

   Bit strings are converted to octet strings by taking bits from left
   to right, packing those from the least significant bit of each octet
   to the most significant bit, and moving to the next octet when each
   octet fills up.  The conversion from octet string to bit string is
   the reverse of this process; for example, the 16-bit bit string

             b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15

   is converted into two octets x0 and x1 (in this order) as

             x0 = b7*128+b6*64+b5*32+b4*16+b3*8+b2*4+b1*2+b0
             x1 = b15*128+b14*64+b13*32+b12*16+b11*8+b10*4+b9*2+b8

   Little-endian encoding into bits places bits from left to right and
   from least significant to most significant.  If combined with
   bit-string-to-octet-string conversion defined above, this results in
   little-endian encoding into octets (if length is not a multiple of 8,
   the most significant bits of the last octet remain unused).

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED",  "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

3.  EdDSA Algorithm

   EdDSA is a digital signature system with 11 parameters.

   The generic EdDSA digital signature system with its 11 input
   parameters is not intended to be implemented directly.  Choosing
   parameters is critical for secure and efficient operation.  Instead,
   you would implement a particular parameter choice for EdDSA (such as
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   Ed25519 or Ed448), sometimes slightly generalized to achieve code
   reuse to cover Ed25519 and Ed448.

   Therefore, a precise explanation of the generic EdDSA is thus not
   particularly useful for implementers.  For background and
   completeness, a succinct description of the generic EdDSA algorithm
   is given here.

   The definition of some parameters, such as n and c, may help to
   explain some steps of the algorithm that are not intuitive.

   This description closely follows [EDDSA2].

   EdDSA has 11 parameters:

   1.   An odd prime power p.  EdDSA uses an elliptic curve over the
        finite field GF(p).

   2.   An integer b with 2^(b-1) > p.  EdDSA public keys have exactly b
        bits, and EdDSA signatures have exactly 2*b bits.  b is
        recommended to be a multiple of 8, so public key and signature
        lengths are an integral number of octets.

   3.   A (b-1)-bit encoding of elements of the finite field GF(p).

   4.   A cryptographic hash function H producing 2*b-bit output.
        Conservative hash functions (i.e., hash functions where it is
        infeasible to create collisions) are recommended and do not have
        much impact on the total cost of EdDSA.

   5.   An integer c that is 2 or 3.  Secret EdDSA scalars are multiples
        of 2^c.  The integer c is the base-2 logarithm of the so-called
        cofactor.

   6.   An integer n with c <= n < b.  Secret EdDSA scalars have exactly
        n + 1 bits, with the top bit (the 2^n position) always set and
        the bottom c bits always cleared.

   7.   A non-square element d of GF(p).  The usual recommendation is to
        take it as the value nearest to zero that gives an acceptable
        curve.

   8.   A non-zero square element a of GF(p).  The usual recommendation
        for best performance is a = -1 if p mod 4 = 1, and a = 1 if
        p mod 4 = 3.

   9.   An element B != (0,1) of the set E = { (x,y) is a member of
        GF(p) x GF(p) such that a * x^2 + y^2 = 1 + d * x^2 * y^2 }.
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   10.  An odd prime L such that [L]B = 0 and 2^c * L = #E.  The number
        #E (the number of points on the curve) is part of the standard
        data provided for an elliptic curve E, or it can be computed as
        cofactor * order.

   11.  A "prehash" function PH.  PureEdDSA means EdDSA where PH is the
        identity function, i.e., PH(M) = M.  HashEdDSA means EdDSA where
        PH generates a short output, no matter how long the message is;
        for example, PH(M) = SHA-512(M).

   Points on the curve form a group under addition, (x3, y3) = (x1, y1)
   + (x2, y2), with the formulas

             x1 * y2 + x2 * y1                y1 * y2 - a * x1 * x2
   x3 = --------------------------,   y3 = ---------------------------
         1 + d * x1 * x2 * y1 * y2          1 - d * x1 * x2 * y1 * y2

   The neutral element in the group is (0,1).

   Unlike many other curves used for cryptographic applications, these
   formulas are "complete"; they are valid for all points on the curve,
   with no exceptions.  In particular, the denominators are non-zero for
   all input points.

   There are more efficient formulas, which are still complete, that use
   homogeneous coordinates to avoid the expensive modulo p inversions.
   See [Faster-ECC] and [Edwards-revisited].

3.1.  Encoding

   An integer 0 < S < L - 1 is encoded in little-endian form as a b-bit
   string ENC(S).

   An element (x,y) of E is encoded as a b-bit string called ENC(x,y),
   which is the (b-1)-bit encoding of y concatenated with one bit that
   is 1 if x is negative and 0 if x is not negative.

   The encoding of GF(p) is used to define "negative" elements of GF(p):
   specifically, x is negative if the (b-1)-bit encoding of x is
   lexicographically larger than the (b-1)-bit encoding of -x.

3.2.  Keys

   An EdDSA private key is a b-bit string k.  Let the hash H(k) =
   (h_0, h_1, ..., h_(2b-1)) determine an integer s, which is 2^n plus
   the sum of m = 2^i * h_i for all integer i, c <= i < n.  Let s
   determine the multiple A = [s]B.  The EdDSA public key is ENC(A).
   The bits h_b, ..., h_(2b-1) are used below during signing.
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3.3.  Sign

   The EdDSA signature of a message M under a private key k is defined
   as the PureEdDSA signature of PH(M).  In other words, EdDSA simply
   uses PureEdDSA to sign PH(M).

   The PureEdDSA signature of a message M under a private key k is the
   2*b-bit string ENC(R) || ENC(S).  R and S are derived as follows.
   First define r = H(h_b || ... || h_(2b-1) || M) interpreting 2*b-bit
   strings in little-endian form as integers in {0, 1, ..., 2^(2*b) -
   1}.  Let R = [r]B and S = (r + H(ENC(R) || ENC(A) || PH(M)) * s) mod
   L.  The s used here is from the previous section.

3.4.  Verify

   To verify a PureEdDSA signature ENC(R) || ENC(S) on a message M under
   a public key ENC(A), proceed as follows.  Parse the inputs so that A
   and R are elements of E, and S is a member of the set {0, 1, ...,
   L-1}.  Compute h = H(ENC(R) || ENC(A) || M), and check the group
   equation [2^c * S] B = 2^c * R + [2^c * h] A in E.  The signature is
   rejected if parsing fails (including S being out of range) or if the
   group equation does not hold.

   EdDSA verification for a message M is defined as PureEdDSA
   verification for PH(M).

4.  PureEdDSA, HashEdDSA, and Naming

   One of the parameters of the EdDSA algorithm is the "prehash"
   function.  This may be the identity function, resulting in an
   algorithm called PureEdDSA, or a collision-resistant hash function
   such as SHA-512, resulting in an algorithm called HashEdDSA.

   Choosing which variant to use depends on which property is deemed to
   be more important between 1) collision resilience and 2) a single-
   pass interface for creating signatures.  The collision resilience
   property means EdDSA is secure even if it is feasible to compute
   collisions for the hash function.  The single-pass interface property
   means that only one pass over the input message is required to create
   a signature.  PureEdDSA requires two passes over the input.  Many
   existing APIs, protocols, and environments assume digital signature
   algorithms only need one pass over the input and may have API or
   bandwidth concerns supporting anything else.

   Note that single-pass verification is not possible with most uses of
   signatures, no matter which signature algorithm is chosen.  This is
   because most of the time, one can’t process the message until the
   signature is validated, which needs a pass on the entire message.
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   This document specifies parameters resulting in the HashEdDSA
   variants Ed25519ph and Ed448ph and the PureEdDSA variants Ed25519 and
   Ed448.

5.  EdDSA Instances

   This section instantiates the general EdDSA algorithm for the
   edwards25519 and edwards448 curves, each for the PureEdDSA and
   HashEdDSA variants (plus a contextualized extension of the Ed25519
   scheme).  Thus, five different parameter sets are described.

5.1.  Ed25519ph, Ed25519ctx, and Ed25519

   Ed25519 is EdDSA instantiated with:

   +-----------+-------------------------------------------------------+
   | Parameter | Value                                                 |
   +-----------+-------------------------------------------------------+
   |     p     | p of edwards25519 in [RFC7748] (i.e., 2^255 - 19)     |
   |     b     | 256                                                   |
   |  encoding | 255-bit little-endian encoding of {0, 1, ..., p-1}    |
   |  of GF(p) |                                                       |
   |    H(x)   | SHA-512(dom2(phflag,context)||x) [RFC6234]            |
   |     c     | base 2 logarithm of cofactor of edwards25519 in       |
   |           | [RFC7748] (i.e., 3)                                   |
   |     n     | 254                                                   |
   |     d     | d of edwards25519 in [RFC7748] (i.e., -121665/121666  |
   |           | = 370957059346694393431380835087545651895421138798432 |
   |           | 19016388785533085940283555)                           |
   |     a     | -1                                                    |
   |     B     | (X(P),Y(P)) of edwards25519 in [RFC7748] (i.e., (1511 |
   |           | 22213495354007725011514095885315114540126930418572060 |
   |           | 46113283949847762202, 4631683569492647816942839400347 |
   |           | 5163141307993866256225615783033603165251855960))      |
   |     L     | order of edwards25519 in [RFC7748] (i.e.,             |
   |           | 2^252+27742317777372353535851937790883648493).        |
   |   PH(x)   | x (i.e., the identity function)                       |
   +-----------+-------------------------------------------------------+

                      Table 1: Parameters of Ed25519

   For Ed25519, dom2(f,c) is the empty string.  The phflag value is
   irrelevant.  The context (if present at all) MUST be empty.  This
   causes the scheme to be one and the same with the Ed25519 scheme
   published earlier.

   For Ed25519ctx, phflag=0.  The context input SHOULD NOT be empty.
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   For Ed25519ph, phflag=1 and PH is SHA512 instead.  That is, the input
   is hashed using SHA-512 before signing with Ed25519.

   Value of context is set by the signer and verifier (maximum of 255
   octets; the default is empty string, except for Ed25519, which can’t
   have context) and has to match octet by octet for verification to be
   successful.

   The curve used is equivalent to Curve25519 [CURVE25519], under a
   change of coordinates, which means that the difficulty of the
   discrete logarithm problem is the same as for Curve25519.

5.1.1.  Modular Arithmetic

   For advice on how to implement arithmetic modulo p = 2^255 - 19
   efficiently and securely, see Curve25519 [CURVE25519].  For inversion
   modulo p, it is recommended to use the identity x^-1 = x^(p-2) (mod
   p).  Inverting zero should never happen, as it would require invalid
   input, which would have been detected before, or would be a
   calculation error.

   For point decoding or "decompression", square roots modulo p are
   needed.  They can be computed using the Tonelli-Shanks algorithm or
   the special case for p = 5 (mod 8).  To find a square root of a,
   first compute the candidate root x = a^((p+3)/8) (mod p).  Then there
   are three cases:

      x^2 = a (mod p).  Then x is a square root.

      x^2 = -a (mod p).  Then 2^((p-1)/4) * x is a square root.

      a is not a square modulo p.

5.1.2.  Encoding

   All values are coded as octet strings, and integers are coded using
   little-endian convention, i.e., a 32-octet string h h[0],...h[31]
   represents the integer h[0] + 2^8 * h[1] + ... + 2^248 * h[31].

   A curve point (x,y), with coordinates in the range 0 <= x,y < p, is
   coded as follows.  First, encode the y-coordinate as a little-endian
   string of 32 octets.  The most significant bit of the final octet is
   always zero.  To form the encoding of the point, copy the least
   significant bit of the x-coordinate to the most significant bit of
   the final octet.
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5.1.3.  Decoding

   Decoding a point, given as a 32-octet string, is a little more
   complicated.

   1.  First, interpret the string as an integer in little-endian
       representation.  Bit 255 of this number is the least significant
       bit of the x-coordinate and denote this value x_0.  The
       y-coordinate is recovered simply by clearing this bit.  If the
       resulting value is >= p, decoding fails.

   2.  To recover the x-coordinate, the curve equation implies
       x^2 = (y^2 - 1) / (d y^2 + 1) (mod p).  The denominator is always
       non-zero mod p.  Let u = y^2 - 1 and v = d y^2 + 1.  To compute
       the square root of (u/v), the first step is to compute the
       candidate root x = (u/v)^((p+3)/8).  This can be done with the
       following trick, using a single modular powering for both the
       inversion of v and the square root:

                          (p+3)/8      3        (p-5)/8
                 x = (u/v)        = u v  (u v^7)         (mod p)

   3.  Again, there are three cases:

       1.  If v x^2 = u (mod p), x is a square root.

       2.  If v x^2 = -u (mod p), set x <-- x * 2^((p-1)/4), which is a
           square root.

       3.  Otherwise, no square root exists for modulo p, and decoding
           fails.

   4.  Finally, use the x_0 bit to select the right square root.  If
       x = 0, and x_0 = 1, decoding fails.  Otherwise, if x_0 != x mod
       2, set x <-- p - x.  Return the decoded point (x,y).

5.1.4.  Point Addition

   For point addition, the following method is recommended.  A point
   (x,y) is represented in extended homogeneous coordinates (X, Y, Z,
   T), with x = X/Z, y = Y/Z, x * y = T/Z.

   The neutral point is (0,1), or equivalently in extended homogeneous
   coordinates (0, Z, Z, 0) for any non-zero Z.

Josefsson & Liusvaara         Informational                    [Page 11]



RFC 8032                EdDSA: Ed25519 and Ed448            January 2017

   The following formulas for adding two points, (x3,y3) =
   (x1,y1)+(x2,y2), on twisted Edwards curves with a=-1, square a, and
   non-square d are described in Section 3.1 of [Edwards-revisited] and
   in [EFD-TWISTED-ADD].  They are complete, i.e., they work for any
   pair of valid input points.

                 A = (Y1-X1)*(Y2-X2)
                 B = (Y1+X1)*(Y2+X2)
                 C = T1*2*d*T2
                 D = Z1*2*Z2
                 E = B-A
                 F = D-C
                 G = D+C
                 H = B+A
                 X3 = E*F
                 Y3 = G*H
                 T3 = E*H
                 Z3 = F*G

   For point doubling, (x3,y3) = (x1,y1)+(x1,y1), one could just
   substitute equal points in the above (because of completeness, such
   substitution is valid) and observe that four multiplications turn
   into squares.  However, using the formulas described in Section 3.2
   of [Edwards-revisited] and in [EFD-TWISTED-DBL] saves a few smaller
   operations.

                 A = X1^2
                 B = Y1^2
                 C = 2*Z1^2
                 H = A+B
                 E = H-(X1+Y1)^2
                 G = A-B
                 F = C+G
                 X3 = E*F
                 Y3 = G*H
                 T3 = E*H
                 Z3 = F*G
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5.1.5.  Key Generation

   The private key is 32 octets (256 bits, corresponding to b) of
   cryptographically secure random data.  See [RFC4086] for a discussion
   about randomness.

   The 32-byte public key is generated by the following steps.

   1.  Hash the 32-byte private key using SHA-512, storing the digest in
       a 64-octet large buffer, denoted h.  Only the lower 32 bytes are
       used for generating the public key.

   2.  Prune the buffer: The lowest three bits of the first octet are
       cleared, the highest bit of the last octet is cleared, and the
       second highest bit of the last octet is set.

   3.  Interpret the buffer as the little-endian integer, forming a
       secret scalar s.  Perform a fixed-base scalar multiplication
       [s]B.

   4.  The public key A is the encoding of the point [s]B.  First,
       encode the y-coordinate (in the range 0 <= y < p) as a little-
       endian string of 32 octets.  The most significant bit of the
       final octet is always zero.  To form the encoding of the point
       [s]B, copy the least significant bit of the x coordinate to the
       most significant bit of the final octet.  The result is the
       public key.

5.1.6.  Sign

   The inputs to the signing procedure is the private key, a 32-octet
   string, and a message M of arbitrary size.  For Ed25519ctx and
   Ed25519ph, there is additionally a context C of at most 255 octets
   and a flag F, 0 for Ed25519ctx and 1 for Ed25519ph.

   1.  Hash the private key, 32 octets, using SHA-512.  Let h denote the
       resulting digest.  Construct the secret scalar s from the first
       half of the digest, and the corresponding public key A, as
       described in the previous section.  Let prefix denote the second
       half of the hash digest, h[32],...,h[63].

   2.  Compute SHA-512(dom2(F, C) || prefix || PH(M)), where M is the
       message to be signed.  Interpret the 64-octet digest as a little-
       endian integer r.

   3.  Compute the point [r]B.  For efficiency, do this by first
       reducing r modulo L, the group order of B.  Let the string R be
       the encoding of this point.
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   4.  Compute SHA512(dom2(F, C) || R || A || PH(M)), and interpret the
       64-octet digest as a little-endian integer k.

   5.  Compute S = (r + k * s) mod L.  For efficiency, again reduce k
       modulo L first.

   6.  Form the signature of the concatenation of R (32 octets) and the
       little-endian encoding of S (32 octets; the three most
       significant bits of the final octet are always zero).

5.1.7.  Verify

   1.  To verify a signature on a message M using public key A, with F
       being 0 for Ed25519ctx, 1 for Ed25519ph, and if Ed25519ctx or
       Ed25519ph is being used, C being the context, first split the
       signature into two 32-octet halves.  Decode the first half as a
       point R, and the second half as an integer S, in the range
       0 <= s < L.  Decode the public key A as point A’.  If any of the
       decodings fail (including S being out of range), the signature is
       invalid.

   2.  Compute SHA512(dom2(F, C) || R || A || PH(M)), and interpret the
       64-octet digest as a little-endian integer k.

   3.  Check the group equation [8][S]B = [8]R + [8][k]A’.  It’s
       sufficient, but not required, to instead check [S]B = R + [k]A’.
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